Quiz Discussion

Consider an infinite G.P. with first term a and common ratio r, its sum is 4 and the second term is 3/4, then

Course Name: Quantitative Aptitude

  • 1]

    a = 7/4, r = 3/7

  • 2]

    a = 2, r = 3/8

  • 3]

    a = 3, r = 1/4

  • 4]

    a = 3/2, r = ½

Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

Let S denotes the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn – k Sn-1 + Sn-2 then k =

  • 1]

    1

  • 2]

    2

  • 3]

    3

  • 4]

    4

Solution
2
Discuss

If log 2, log (2x -1) and log (2x + 3) are in A.P, then x is equal to ___

  • 1]

     

    5/2

  • 2]

    log25

  • 3]

    log32

  • 4]

     

    3/2

Solution
3
Discuss

The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, the number of terms is

  • 1]

    10

  • 2]

    11

  • 3]

    12

  • 4]

    13

Solution
4
Discuss

How many terms are there in 20, 25, 30 . . . . . . 140?

  • 1] 22
  • 2] 25
  • 3] 23
  • 4] 24
Solution
5
Discuss

The 7th and 12th term of an arithmetic progression are -15 and 5 respectively. What is the 16th term?

  • 1] 25
  • 2] 29
  • 3] 21
  • 4] 33
Solution
6
Discuss

If the sum of n terms of an A.P. be 3n2 + n and its common difference is 6, then its first term is

  • 1] 2
  • 2] 3
  • 3] 1
  • 4] 4
Solution
7
Discuss

The nth term of an A.P., the sum of whose n terms is Sn, is

  • 1] Sn + Sn - 1
  • 2] Sn - Sn - 1
  • 3] Sn + Sn + 1
  • 4] Sn - Sn + 1
Solution
8
Discuss

The 2nd and 8th term of an arithmetic progression are 17 and -1 respectively. What is the 14th term?

  • 1] -22
  • 2] -25
  • 3] -19
  • 4] -28
Solution
9
Discuss

The 3rd and 7th term of an arithmetic progression are -9 and 11 respectively. What is the 15th term?

  • 1]

    28

  • 2]

    87

  • 3]

    51

  • 4]

    17

Solution
10
Discuss

If the nth term of an A.P. is 2n + 1, then the sum of first n terms of the A.P. is

  • 1] n(n - 2)
  • 2] n(n + 2)
  • 3] n(n + 1)
  • 4] n(n - 1)
Solution
# Quiz