Quiz Discussion

Find the first term of an AP whose 8th and 12th terms are respectively 39 and 59.

Course Name: Quantitative Aptitude

  • 1] 5
  • 2] 6
  • 3] 4
  • 4] 3
  • 5] 7
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

The sum of first n odd natural numbers in

  • 1] 2n - 1
  • 2] 2n + 1
  • 3] n2
  • 4] n2 - 1
Solution
2
Discuss

A bacteria gives birth to two new bacteria in each second and the life span of each bacteria is 5 seconds. The process of the reproduction is continuous until the death of the bacteria. initially there is one newly born bacteria at time t = 0, the find the total number of live bacteria just after 10 seconds :

  • 1]

    \(\frac{{{3^{10}}}}{2}\)

  • 2]

    310 - 210

  • 3]

    243 × (35 -1)

  • 4]

    310 - 25

  • 5]

    None of these

Solution
3
Discuss

If 18, a, b - 3 are in A.P. then a + b =

  • 1] 19
  • 2] 7
  • 3] 11
  • 4] 15
Solution
4
Discuss

What is the sum of the following series? -64, -66, -68, ......, -100

  • 1] -1458
  • 2] -1558
  • 3] -1568
  • 4] -1664
Solution
5
Discuss

If an A.P. has a = 1, tn = 20 and sn = 399, then value of n is :

  • 1] 20
  • 2] 32
  • 3] 38
  • 4] 40
Solution
6
Discuss

If three numbers be in G.P., then their logarithms will be in

  • 1]

    AP

  • 2]

    GP

  • 3]

    HP

  • 4]

     None Of This

Solution
7
Discuss

Find the nth term of the following sequence :
5 + 55 + 555 + . . . . Tn

  • 1]

     

    5(10n - 1) 

  • 2]

     

    5n(10n - 1)

  • 3]

    5/9×(10n−1)

       

  • 4]

    (5/9)n×(10n−1)

Solution
8
Discuss

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of (p + q) terms will be

  • 1] 0
  • 2] p - q
  • 3] p + q
  • 4] -(p + q)
Solution
9
Discuss

The sum of first five multiples of 3 is:

  • 1] 45
  • 2] 65
  • 3] 75
  • 4] 90
Solution
10
Discuss

If S1 is the sum of an arithmetic progression of ‘n’ odd number of terms and S2 is the sum of the terms of the series in odd places, then \(\frac{{{S_1}}}{{{S_2}}}\)

 

  • 1]

    \(\frac{{2n}}{{n + 1}}\)

  • 2]

    \(\frac{n}{{n + 1}}\)

  • 3]

    \(\frac{{n + 1}}{{2n}}\)

  • 4]

    \(\frac{{n - 1}}{n}\)

Solution
# Quiz