Let 0 < x < 1, then the correct inequality is = ?
\(x < \sqrt x < {x^2}\)
\(\sqrt x < x < {x^2}\)
\({x^2} < x < \sqrt x \)
\(\sqrt x < {x^2} < x\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
\(\frac{{225}}{{836}} \times \frac{{152}}{{245}} \div 1\frac{{43}}{{77}} = ?\)
Solution |
2
Discuss
|
\(\frac{{ \root 3 \of 8 }}{{\sqrt {16} }} \div \sqrt {\frac{{100}}{{49}}} \times \root 3 \of {125} \) is equal to = ?
Solution |
3
Discuss
|
If \(\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\) and \(\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\) where a, b, c, p, q, r are non-zero real numbers, then \(\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\) is equal to = ?
Solution |
4
Discuss
|
Simplify : \(\left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) - \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] \div \left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) + \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] = ?\)
Solution |
5
Discuss
|
Solve \({ \text{1}}\frac{4}{5} + 20 - 280 \div 25 = ?\)
Solution |
6
Discuss
|
The difference of \({ \text{1}}\frac{3}{{16}}\) and its reciprocal is equal to = ?
Solution |
7
Discuss
|
The value of \(\frac{{25 - 5\left[ {2 + 3\left\{ {2 - 2\left( {5 - 3} \right) + 5} \right\} - 10} \right]}}{4} = ?\)
Solution |
8
Discuss
|
The value (1001)3 is = ?
Solution |
9
Discuss
|
Simplify : \(1 + {1 \over {1 + {2 \over {2 + {3 \over {1 + {4 \over 5}}}}}}}\)
Solution |
10
Discuss
|
The number of pairs of natural numbers the difference of whose squares is 45 will be ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved