The rational numbers lying between 1/3 and 3/4 are :
\(\frac{{117}}{{300}},\frac{{287}}{{400}}\)
\(\frac{{95}}{{300}},\frac{{301}}{{400}}\)
\(\frac{{99}}{{300}},\frac{{301}}{{400}}\)
\(\frac{{97}}{{300}},\frac{{299}}{{500}}\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
The value of \(\left( {\frac{{0.1 \times 0.1 \times 0.1 + 0.02 \times 0.02 \times 0.02}}{{0.2 \times 0.2 \times 0.2 + 0.04 \times 0.04 \times 0.04}}} \right) \) is :
Solution |
2
Discuss
|
0.04 x 0.0162 is equal to:
Solution |
3
Discuss
|
If \(\frac{{144}}{{0.144}} = \frac{{14.4}}{x}\) then the value of x is:
Solution |
4
Discuss
|
Express 1999/2111 in decimal :
Solution |
5
Discuss
|
The value of \(\frac{{3.157 \times 4126 \times 3.198}}{{63.972 \times 2835.121}}\) is closest to :
Solution |
6
Discuss
|
Solve \(\frac{294 ÷ 14 × 5 + 11}{?}\) = 82 ÷ 5 + 1.7
Solution |
7
Discuss
|
534.596 + 61.472 - 496.708 = ? + 27.271
Solution |
8
Discuss
|
Solve this, (3.5 × 1.4)/ 0.7 = ?
Solution |
9
Discuss
|
What decimal of an hour is a second ?
Solution |
10
Discuss
|
0.3 + 3 + 3.33 + 3.3 + 3.03 + 333 = ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved