The simplest value of \(\left( {\frac{1}{{\sqrt 9 - \sqrt 8 }} - \frac{1}{{\sqrt 8 - \sqrt 7 }} + \frac{1}{{\sqrt 7 - \sqrt 6 }} - \frac{1}{{\sqrt 6 - \sqrt 5 }}} \right)\) is = ?
\(3 - \sqrt 5 \)
3
\(\sqrt 5 \)
\(\sqrt 5 - 3\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
If \(\left( {{a^4} + \frac{1}{{{a^4}}}} \right){ \text{ = 1154,}}\) then the value of \(\left( {{a^3} + \frac{1}{{{a^3}}}} \right)\) is = ?
Solution |
2
Discuss
|
The value (1001)3 is = ?
Solution |
3
Discuss
|
When \(\left( {\frac{1}{2} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}} \right) \) is divided by \(\left( {\frac{2}{5} - \frac{5}{9} + \frac{3}{5} - \frac{7}{{18}}} \right)\) then the result is = ?
Solution |
4
Discuss
|
The simplified value of \(\frac{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}}{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) + \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}} = ?\)
Solution |
5
Discuss
|
5907 – 1296 / 144 = x * 8.0
Solution |
6
Discuss
|
The sum of \(\sqrt {0.01} + \sqrt {0.81} + \sqrt {1.21} + \sqrt {0.0009} = ?\)
Solution |
7
Discuss
|
Solve this 9 3/7 - 6 4/7 - ? = 14 4/7
Solution |
8
Discuss
|
If \(\left( {4{b^2} + \frac{1}{{{b^2}}}} \right){ \text{ = 2,}} \) then \(\left( {8{b^3} + \frac{1}{{{b^3}}}} \right)\) = ?
Solution |
9
Discuss
|
Find the value of \(\sqrt {4 + \sqrt {44 + \sqrt {10000} } } \)
Solution |
10
Discuss
|
\(\left( {x + \frac{1}{x}} \right)\left( {x - \frac{1}{x}} \right)\left( {{x^2} + \frac{1}{{{x^2}}} - 1} \right)\left( {{x^2} + \frac{1}{{{x^2}}} + 1} \right)\) is equal to ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved