\(1\frac{3}{4} - 1\frac{1}{5} + 1\frac{5}{8} = ?\)
\(2\frac{7}{{40}}\)
\(3\frac{7}{{40}}\)
\(9\frac{5}{8}\)
\(10\frac{7}{8}\)
None of these
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
| # | Quiz |
|---|---|
|
1
Discuss
|
If \(\left( {x - \frac{1}{x}} \right){ \text{ = }}\sqrt {21} { \text{,}} \) then the value of \(\left( {{x^2} + \frac{1}{{{x^2}}}} \right) \left( {x + \frac{1}{x}} \right)\) is = ?
Solution |
|
2
Discuss
|
\({ \text{If }}x = \frac{1}{{2 + \frac{1}{2}}}{ \text{ then }}\frac{1}{x} = ?\)
Solution |
|
3
Discuss
|
\(\frac{{{{\left( {469 + 174} \right)}^2} - {{\left( {469 - 174} \right)}^2}}}{{469 \times 174}} \) = ?
Solution |
|
4
Discuss
|
\(4\frac{4}{5} \div 6\frac{2}{5} = ?\)
Solution |
|
5
Discuss
|
Simplify : \(1 - \left[ {1 - \left\{ {1 - \left( {1 - \overline {1 - 1} } \right)} \right\}} \right]\)
Solution |
|
6
Discuss
|
\(\sqrt {\frac{{{{\left( {0.03} \right)}^2} + {{\left( {0.21} \right)}^2} + {{\left( {0.065} \right)}^2}}}{{{{\left( {0.003} \right)}^2} + {{\left( {0.021} \right)}^2} + {{\left( {0.0065} \right)}^2}}}}\)
Solution |
|
7
Discuss
|
\(\left( {\frac{{785 \times 785 \times 785 + 435 \times 435 \times 435}}{{785 \times 785 + 435 \times 435 - 785 \times 435}}} \right)\) simplifies to = ?
Solution |
|
8
Discuss
|
Simplify : \(\left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) - \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] \div \left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) + \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] = ?\)
Solution |
|
9
Discuss
|
\(\left\{ {\left( {64 - 38} \right) \times 4} \right\} \div 13 = ?\)
Solution |
|
10
Discuss
|
The simplest value of \(\left( {\frac{1}{{\sqrt 9 - \sqrt 8 }} - \frac{1}{{\sqrt 8 - \sqrt 7 }} + \frac{1}{{\sqrt 7 - \sqrt 6 }} - \frac{1}{{\sqrt 6 - \sqrt 5 }}} \right)\) is = ?
Solution |
| # | Quiz |
Copyright © 2020 Inovatik - All rights reserved