\( \root 3 \of {\sqrt {0.000064} } = ?\)
Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api
# | Quiz |
---|---|
1
Discuss
|
\({\left( {\sqrt 3 - \frac{1}{{\sqrt 3 }}} \right)^2}\) simplifies to:
Solution |
2
Discuss
|
\(\sqrt {\frac{{25}}{{81}} - \frac{1}{9}} = ?\)
Solution |
3
Discuss
|
\({\left( {15} \right)^2} + {\left( {18} \right)^2} - 20 = \sqrt ? \)
Solution |
4
Discuss
|
If
Solution |
5
Discuss
|
If x=
Solution |
6
Discuss
|
Given \(\sqrt 2 = 1.414.\) Then the value of \(\sqrt 8\) + \(2\sqrt {32} \) - \(3\sqrt {128}\) + \(4\sqrt {50}\) is = ?
Solution |
7
Discuss
|
Solution |
8
Discuss
|
What is \(\frac{{5 + \sqrt {10} }}{{5\sqrt 5 - 2\sqrt {20} - \sqrt {32} + \sqrt {50} }}\) equal to ?
Solution |
9
Discuss
|
The cube root of .000216 is:
Solution |
10
Discuss
|
\(\frac{1}{{\left( {\sqrt 9 - \sqrt 8 } \right)}} - \frac{1}{{\left( {\sqrt 8 - \sqrt 7 } \right)}} + \frac{1}{{\left( {\sqrt 7 - \sqrt 6 } \right)}} - \frac{1}{{\left( {\sqrt 6 - \sqrt 5 } \right)}} + \frac{1}{{\left( {\sqrt 5 - \sqrt 4 } \right)}}\) is equal to ?
Solution |
# | Quiz |
Copyright © 2020 Inovatik - All rights reserved