Quiz Discussion

The number of digits in the square root of 625685746009 is = ?

Course Name: Quantitative Aptitude

  • 1] 4
  • 2] 5
  • 3] 6
  • 4] 7
Solution
No Solution Present Yet

Top 5 Similar Quiz - Based On AI&ML

Quiz Recommendation System API Link - https://fresherbell-quiz-api.herokuapp.com/fresherbell_quiz_api

# Quiz
1
Discuss

\(99 \times 21 - \root 3 \of ? = 1968\)

 

  • 1] 1367631
  • 2] 111
  • 3] 1366731
  • 4] 1367
Solution
2
Discuss

The value of \(\sqrt {0.121} \)   is = ?

 

  • 1] 0.011
  • 2] 0.11
  • 3] 0.347
  • 4] 1.1
Solution
3
Discuss

The smallest number to be added to 680621 to make the sum a perfect square is = ?

  • 1] 4
  • 2] 5
  • 3] 6
  • 4] 8
Solution
4
Discuss

Given \(\sqrt 5 = 2.2361,   \sqrt 3 = 1.7321{ \text{,}}   then \frac{1}{{\sqrt 5 - \sqrt 3 }}\)   is equal to ?

 

  • 1] 1.98
  • 2] 1.984
  • 3] 1.9841
  • 4] 2
Solution
5
Discuss

\(\left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right) \)     simplifies to = ?

 

  • 1]

    \(16 - \sqrt 3 \)

  • 2]

    \(4 - \sqrt 3 \)

  • 3]

    \(2 - \sqrt 3 \)

  • 4]

    \(2 + \sqrt 3 \)

Solution
6
Discuss

If \({ \text{ }}2*3 = \sqrt {13} \)   and 3 * 4 = 5, then the value of 5 * 12 is ?

 

  • 1]

    \(\sqrt {17} \)

  • 2]

    \(\sqrt {29} \)

  • 3]

    12

  • 4]

    13

Solution
7
Discuss

For what value of * the statement  = 1 is true?

 

  • 1] 15
  • 2] 25
  • 3] 35
  • 4] 45
Solution
8
Discuss

By what least number must 21600 be multiplied so as to make it perfect cube ?

  • 1] 6
  • 2] 10
  • 3] 20
  • 4] 30
Solution
9
Discuss

R is a positive number. It is multiplied by 8 and then squared. The square is now divided by 4 and the square root is taken. The result of the square root is Q. What is the value of Q ?

  • 1] 3R
  • 2] 4R
  • 3] 7R
  • 4] 9R
Solution
10
Discuss

If \(a = \frac{{\sqrt 3 }}{2}{ \text{}}\)   then \(\sqrt {1 + a} + \sqrt {1 - a} = ?\)

 

  • 1]

    \(\left( {2 - \sqrt 3 } \right)\)

  • 2]

    \(\left( {2 + \sqrt 3 } \right)\)

  • 3]

    \(\left( {\frac{{\sqrt 3 }}{2}} \right)\)

  • 4]

    \(\sqrt 3 \)

Solution
# Quiz