alternative
  • Home (current)
  • About
  • Tutorial
    Technologies
    C#
    Deep Learning
    Statistics for AIML
    Natural Language Processing
    Machine Learning
    SQL -Structured Query Language
    Python
    Ethical Hacking
    Placement Preparation
    Quantitative Aptitude
    View All Tutorial
  • Quiz
    C#
    SQL -Structured Query Language
    Quantitative Aptitude
    Java
    View All Quiz Course
  • Q & A
    C#
    Quantitative Aptitude
    Java
    View All Q & A course
  • Programs
  • Articles
    Identity And Access Management
    Artificial Intelligence & Machine Learning Project
    How to publish your local website on github pages with a custom domain name?
    How to download and install Xampp on Window Operating System ?
    How To Download And Install MySql Workbench
    How to install Pycharm ?
    How to install Python ?
    How to download and install Visual Studio IDE taking an example of C# (C Sharp)
    View All Post
  • Tools
    Program Compiler
    Sql Compiler
    Replace Multiple Text
    Meta Data From Multiple Url
  • Contact
  • User
    Login
    Register

Statistics for AIML - Regression Metrics - Degree Of freedom Tutorial

The number of independent pieces of information used to calculate the statistic is called the degrees of freedom. The degrees of freedom of a statistic depend on the sample size:

Degree Of freedom = n (sample size) - 1

  • When the sample size is small, there are only a few independent pieces of information, and therefore only a few degrees of freedom.
  • When the sample size is large, there are many independent pieces of information, and therefore many degrees of freedom.

As DF increases the t-distribution reaches closer to the normal distribution. At low DF, we have fat tails. If DF > 30, then t-distribution is as good as normal distribution.

 

In predictive modeling, the degrees of freedom often refers to the number of parameters in the model that are estimated from data.

This linear regression model has two degrees of freedom because there are two parameters in the model that must be estimated from a training dataset. Adding one more variable to the data would add one more degree of freedom for the model.

 

Statistics for AIML

Statistics for AIML

  • Introduction
  • Data Visualization
    • Overview
  • Descriptive statistics
    • Overview
    • Calculate Z Score
    • Covariance and Covariance matrix
    • Covariance vs. Correlation
    • QQ-Plot
    • Central Limit Theorem
  • Inferential Statistics
    • Overview
    • Hypothesis Testing
    • Statistical Test and there types
    • Bias Variance Trade Off
  • Regression Metrics
    • Overview
    • Accuracy
    • PR Curve (Precision-Recall Curve)
    • AUC-ROC Curve
    • Different types of Sampling
    • Skewness
    • Kurtosis
    • Degree Of freedom
    • Different Types Of Probability Distribution
    • Outlier
    • Bayes Theorem
    • Probability

About Fresherbell

Best learning portal that provides you great learning experience of various technologies with modern compilation tools and technique

Important Links

Don't hesitate to give us a call or send us a contact form message

Terms & Conditions
Privacy Policy
Contact Us

Social Media

© Untitled. All rights reserved. Demo Images: Unsplash. Design: HTML5 UP.

Toggle