alternative
  • Home (current)
  • About
  • Tutorial
    Technologies
    C#
    Deep Learning
    Statistics for AIML
    Natural Language Processing
    Machine Learning
    SQL -Structured Query Language
    Python
    Ethical Hacking
    Placement Preparation
    Quantitative Aptitude
    View All Tutorial
  • Quiz
    C#
    SQL -Structured Query Language
    Quantitative Aptitude
    Java
    View All Quiz Course
  • Q & A
    C#
    Quantitative Aptitude
    Java
    View All Q & A course
  • Programs
  • Articles
    Identity And Access Management
    Artificial Intelligence & Machine Learning Project
    How to publish your local website on github pages with a custom domain name?
    How to download and install Xampp on Window Operating System ?
    How To Download And Install MySql Workbench
    How to install Pycharm ?
    How to install Python ?
    How to download and install Visual Studio IDE taking an example of C# (C Sharp)
    View All Post
  • Tools
    Program Compiler
    Sql Compiler
    Replace Multiple Text
    Meta Data From Multiple Url
  • Contact
  • User
    Login
    Register

Machine Learning - Supervised Learning - Neural Network (MultiLayer Perceptron) Tutorial

Multi-layer perception is also known as MLP. It is fully connected dense layers, which transform any input dimension to the desired dimension. A multi-layer perception is a neural network that has multiple layers. To create a neural network we combine neurons together so that the outputs of some neurons are inputs of other neurons.

 

A gentle introduction to neural networks and TensorFlow can be found here:

 

Neural Networks

Introduction to TensorFlow

 

A multi-layer perceptron has one input layer and for each input, there is one neuron(or node), it has one output layer with a single node for each output and it can have any number of hidden layers and each hidden layer can have any number of nodes. A schematic diagram of a Multi-Layer Perceptron (MLP) is depicted below.


 

https://media.geeksforgeeks.org/wp-content/uploads/nodeNeural.jpg

 

In the multi-layer perceptron diagram above, we can see that there are three inputs and thus three input nodes and the hidden layer has three nodes. The output layer gives two outputs, therefore there are two output nodes. The nodes in the input layer take input and forward it for further process, in the diagram above the nodes in the input layer forwards their output to each of the three nodes in the hidden layer, and in the same way, the hidden layer processes the information and passes it to the output layer. 

 

Every node in the multi-layer perception uses a sigmoid activation function. The sigmoid activation function takes real values as input and converts them to numbers between 0 and 1 using the sigmoid formula.

 

α(x) = 1/( 1 + exp(-x))

 

Machine Learning

Machine Learning

  • Introduction
  • Overview
    • Type Of Machine Learning
    • Batch Vs Online Machine Learning
    • Instance Vs Model Based Learning
    • Challenges in Machine Learning
    • Machine Learning Development Life Cycle
  • Machine Learning Development Life Cycle
    • Framing the Problem
    • Data Gathering
    • Understanding your Data
    • Exploratory Data Analysis (EDA)
    • Feature Engineering
    • Principal Component Analysis
    • Column Transformer
    • Machine Learning Pipelines
    • Mathematical Transformation
    • Binning and Binarization | Discretization | Quantile Binning | KMeans Binning
  • Supervised Learning
    • Overview
    • Linear Regression [Regression]
    • Multiple Linear Regression
    • Polynomial Linear Regression [Regression]
    • Bias Variance Trade Off
    • Regularization
    • LOGISTIC REGRESSION [Regression & Classification]
    • Polynomial Logistic Regression
    • Support Vector Machines / Support Vector Regressor
    • Naïve Bayes Classifier [classification]
    • Decision Tree
    • Entropy
    • Information Gain
    • K Nearest Neighbor (KNN)
    • Neural Network (MultiLayer Perceptron)
  • Ensemble Learning
    • Introduction to Ensemble Learning
    • Basic Ensemble Techniques
    • Advanced Ensemble Techniques
    • Random Forest Classifier
    • Boosting
  • UnSupervised Learning
    • Overview
    • K Mean Clustering

About Fresherbell

Best learning portal that provides you great learning experience of various technologies with modern compilation tools and technique

Important Links

Don't hesitate to give us a call or send us a contact form message

Terms & Conditions
Privacy Policy
Contact Us

Social Media

© Untitled. All rights reserved. Demo Images: Unsplash. Design: HTML5 UP.

Toggle