alternative
  • Home (current)
  • About
  • Tutorial
    Technologies
    C#
    Deep Learning
    Statistics for AIML
    Natural Language Processing
    Machine Learning
    SQL -Structured Query Language
    Python
    Ethical Hacking
    Placement Preparation
    Quantitative Aptitude
    View All Tutorial
  • Quiz
    C#
    SQL -Structured Query Language
    Quantitative Aptitude
    Java
    View All Quiz Course
  • Q & A
    C#
    Quantitative Aptitude
    Java
    View All Q & A course
  • Programs
  • Articles
    Identity And Access Management
    Artificial Intelligence & Machine Learning Project
    How to publish your local website on github pages with a custom domain name?
    How to download and install Xampp on Window Operating System ?
    How To Download And Install MySql Workbench
    How to install Pycharm ?
    How to install Python ?
    How to download and install Visual Studio IDE taking an example of C# (C Sharp)
    View All Post
  • Tools
    Program Compiler
    Sql Compiler
    Replace Multiple Text
    Meta Data From Multiple Url
  • Contact
  • User
    Login
    Register

Machine Learning - Supervised Learning - Polynomial Linear Regression [Regression] Tutorial

Hyperparameter – degree, include_bias

If data is not linear, then polynomial LR will work

 

Polynomial Regression is a regression algorithm that models the relationship between a dependent(y) and independent variable(x) as nth degree polynomial. The Polynomial Regression equation is given below

y= b0+b1x1+ b2x12+ b3x13+...... bnx1n

if in dataset, data points are arranged in a non-linear fashion, we need the Polynomial Regression model

Why polynomial linear regression called linear regression, though the model is not linear?

Polynomial regression is a form of Linear regression where only due to the Non-linear relationship between dependent and independent variables we add some polynomial terms to linear regression to convert it into Polynomial regression.

Practically, we transform dataset using PolynomialFeature, an then pass it to LinearRegression

 

ML Polynomial Regression

 

If degree is 2,and 1 input variable then equation is y= b0+b1x1+ b2x12

If higher value of degree, this model will overfit. If less value of degree, this model will underfit. So, optimal value is required.

Multiple polynomial regression

If degree is 2,and 2 input variable then equation is y= b0 + b1x1 + b2x12 + b3x2+ b4x22

If degree is 3,and 2 input variable then equation is y= b0 + b1x1 + b2x12 + b3x13+ b4x2 + b5x22 + b6x23

 

Machine Learning

Machine Learning

  • Introduction
  • Overview
    • Type Of Machine Learning
    • Batch Vs Online Machine Learning
    • Instance Vs Model Based Learning
    • Challenges in Machine Learning
    • Machine Learning Development Life Cycle
  • Machine Learning Development Life Cycle
    • Framing the Problem
    • Data Gathering
    • Understanding your Data
    • Exploratory Data Analysis (EDA)
    • Feature Engineering
    • Principal Component Analysis
    • Column Transformer
    • Machine Learning Pipelines
    • Mathematical Transformation
    • Binning and Binarization | Discretization | Quantile Binning | KMeans Binning
  • Supervised Learning
    • Overview
    • Linear Regression [Regression]
    • Multiple Linear Regression
    • Polynomial Linear Regression [Regression]
    • Bias Variance Trade Off
    • Regularization
    • LOGISTIC REGRESSION [Regression & Classification]
    • Polynomial Logistic Regression
    • Support Vector Machines / Support Vector Regressor
    • Naïve Bayes Classifier [classification]
    • Decision Tree
    • Entropy
    • Information Gain
    • K Nearest Neighbor (KNN)
    • Neural Network (MultiLayer Perceptron)
  • Ensemble Learning
    • Introduction to Ensemble Learning
    • Basic Ensemble Techniques
    • Advanced Ensemble Techniques
    • Random Forest Classifier
    • Boosting
  • UnSupervised Learning
    • Overview
    • K Mean Clustering

About Fresherbell

Best learning portal that provides you great learning experience of various technologies with modern compilation tools and technique

Important Links

Don't hesitate to give us a call or send us a contact form message

Terms & Conditions
Privacy Policy
Contact Us

Social Media

© Untitled. All rights reserved. Demo Images: Unsplash. Design: HTML5 UP.

Toggle